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Research ldea Result: Type Distribution

* We conduct an experiment to study an individual’s strategic e Does rationality levels against robots capture individual strategic
reasoning levels across games by matching subjects w/ robot players reasoning capacity? (n = 293)

* Motivation: establishing an approach to measure a subject’s *  Within-subject analysis: signed-rank test (p < 0.001)
Strategic reasoning depth in the lab is importa nt . Ring Game Marginal Distributions of Levels _ Guessing Game Marginal Distributions of Levels

* Challenge: unstable individual strategic reasoning levels across S oo Treatment ——— i
games (E.g., Georganas et al., 2015; Cerigioni et al., 2019) i S Testpvalue =015 KS Test palte = 001
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e Possible reason: heterogeneous beliefs about human opponents <+
* Previous studies: using computer players for studying non-

equilibrium behavior (E.g., Johnson et al., 2002)
* Focusing on one family of games in one study
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Experiment Protocol
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Bro-Tost (with p = 2/3, 1/2, 1/3) Result: Constant Absolute Rationality Levels
1. CRT 1. vs. Computer ) .
2. Memory Task 2. vs. Data from 1 » Is a player’s reasoning depth constant across games?

. 112 (38.23%) exhibit the same rationality levels across games
e Does the seemingly high proportion of constant-level players
actually result from two independent type distributions?
* Null hypothesis: the subjects’ rationality depths are independently
distributed across families of games
e Monte Carlo simulation: 10,000 random samples of 293 pairs of

Ring Game Farsightedness
1. vs. Computer 9 levels (Georganas et al., 2015)

Task

2. vs. Data from 1 1. Two decisions . Independently drawn from the empirical distribution

Robot Treatment Transition Matrix Constant Level

Frequency Pool Data
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Ring Game (Kneeland, 2015) - o0 00 00 T
. . . ) . ) 1261 5 88 Simulation mean: 32.9%
The only difference between G1 and G2 is P4’s payoff matrix o o ° Simulation 95% CL:  [27.6%. 38.2%]
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‘ - - : Result: Constant Ordering of Rationality Levels
G2 » Does the ranking of players (in terms of rationality levels) remain
Player 1 Player 2 Player 3 Player 4 the same across games?
Player 2's actions Player 3's actions Player 4's actions Player 1's actions . . . . .
T e T e e  Define switch ratio = switch frequency/non-switch frequency
) ) ) ) . Under the null hypothesis, the (expected) switch ratio =1
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] Rin 2 4 Switch frequency: 12.3% 22.5%
2-Person Guessing Game (Costa-Gomes and Crawford, 2006) Guess%n 7 3 Non-switch frequency:  41.3% 22.5%
. U.202(100 - 1G G ! & Switch ratio: 0.30 1.01
i =0.2( - |Guess; —p - Guess, p-value: < 0.0001
* Guess;=1{1,2,..,100}fori=1, 2 v Non-switch:
* Dominance solvable given a single-peaked payoff structure _ _ History Treatment
- _ _ _ _ _ Player i | Player j Switch frequency: 12.9% 17.9%
|dentification by Revealed Rationality (Lim and Xiong, 2016) Ring 2 4 Non-switch frequency:  34.5% 17.8%
. . . - _ Guessing 1 2 Switch ratio: 0.37 1.02
 (First-order) Rationality: the ability to best respond to some belief p-value: < 0.0001
* K, -order rationality: the ability to anticipate that the opponents
are (K - 1),-order rational and to best respond to such belief Conclusion

* Oneis ky,-order revealed rational if his strategy survives k rounds
of iterated elimination of dominated strategies (IEDS)
« Asubjectis assigned to the lowest type he exhibits across games

* We find some consistency in subjects’ rationality depths across
games in terms of both absolute and relative levels

 This result suggests that strategic reasoning ability may be a

Treatments: Robot and History persistent personal trait

. Furthermore, after controlling for a subject’s beliefs about his/her
opponent’s rationality, we may be able to gauge the subject’s
strategic thinking ability using his/her choice data

 Play the games in two different scenarios (without feedback)
1. Robot Treatment: against fully rational computer players
2. History Treatment: against the data drawn from the first scenario
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