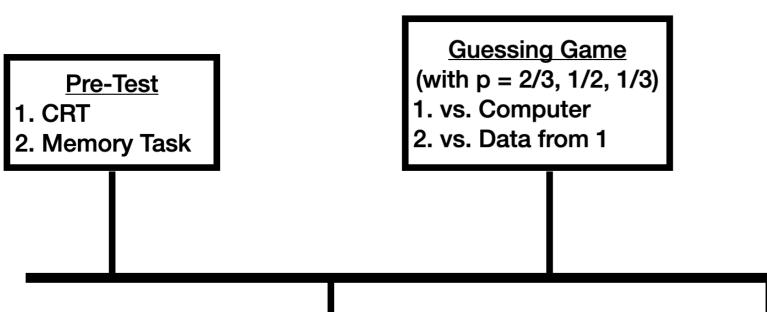
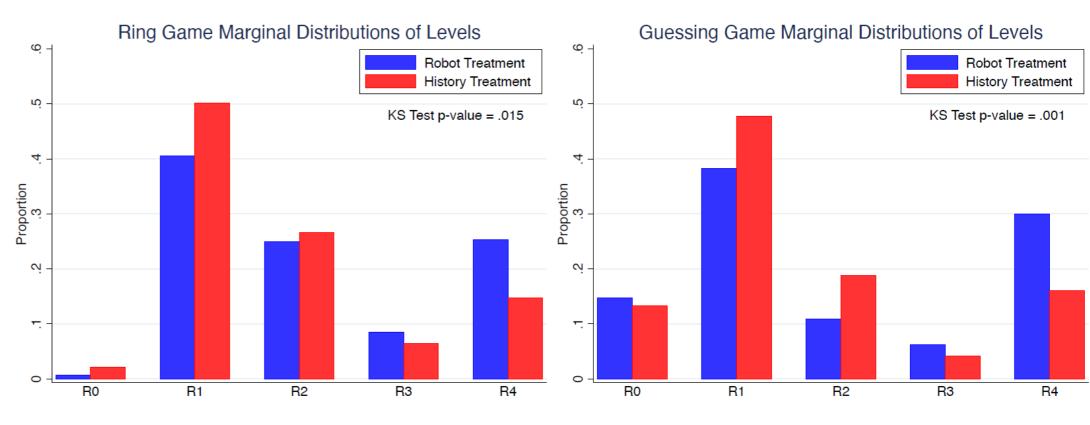
Measuring Higher-Order Rationality with Belief Control


Wei James Chen¹, Meng-Jhang Fong², Po-Hsuan Lin²

¹National Taiwan University

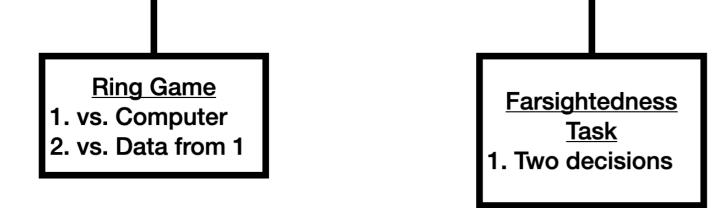
Research Idea

- We conduct an experiment to study an individual's strategic reasoning levels across games by matching subjects w/ robot players
- Motivation: establishing an approach to measure a subject's strategic reasoning depth in the lab is important
- Challenge: unstable individual strategic reasoning levels across games (E.g., Georganas et al., 2015; Cerigioni et al., 2019)
 - Possible reason: heterogeneous beliefs about human opponents
- Previous studies: using computer players for studying nonequilibrium behavior (E.g., Johnson et al., 2002)
 - Focusing on one family of games in one study


Experiment Protocol

Result: Type Distribution

²California Institute of Technology


Does rationality levels against robots capture individual strategic reasoning capacity? (*n* = 293)

Within-subject analysis: signed-rank test (*p* < 0.001)

Result: Constant Absolute Rationality Levels

- Is a player's reasoning depth constant across games?
 - 112 (38.23%) exhibit the same rationality levels across games
- Does the seemingly high proportion of constant-level players actually result from two independent type distributions?
- Null hypothesis: the subjects' rationality depths are independently

Ring Game (Kneeland, 2015)

The only difference between G1 and G2 is P4's payoff matrix

										G1										
		Ρ	layer	1			Ρ	layer	2				P	ayer	3			P	layer	4
		Playe	er 2's ac	ctions			Playe	er 3's ac	ctions				Playe	er 4's ac	tions			Playe	er 1's ac	tions
		а	b	С			а	b	С				а	b	С			а	b	С
ctions	а	8	20	12	2's actions	а	14	18	4		ctions	а	20	14	8	actions	а	6	10	8
Player 1's actions	b	0	8	16	r 2's au	b	20	8	14		Player 3's actions	b	16	2	18	4's	b	12	16	14
Playe	с	18	12	6	Player	с	0	16	18		Playe	с	0	16	16	Player	С	8	12	10
										G2										

	Player 1					Player 2					Player 3								Player 4			
	Player 2's actions					Player 3's actions					Player 4's actions								Player 1's actions			
		а	b	С			а	b	С				а	b	С				а	b	с	
tions	а	8	20	12	tions	а	14	18	4		tions	а	20	14	8		tions	а	8	12	10	
r 1's actions	b	0	8	16	r J's actions	b	20	8	14		r 3's actions	b	16	2	18		r 4's actions	b	6	10	8	
Player	с	18	12	6	Tevelo	с	0	16	18		Player	с	0	16	16		Playe	с	12	16	14	

2-Person Guessing Game (Costa-Gomes and Crawford, 2006)

- $U_i = 0.2(100 |Guess_i p \cdot Guess_{-i}|)$
 - *Guess*_{*i*} = {1, 2,..., 100} for *i* = 1, 2
 - Dominance solvable given a single-peaked payoff structure

- distributed across families of games
- Monte Carlo simulation: 10,000 random samples of 293 pairs of levels (Georganas et al., 2015)
 - Independently drawn from the empirical distribution

		Robot Trea	tment Trans	ition Matrix		Constant Level	Pool Data
Ro	50.00	50.00	0.00	0.00	0.00	Frequency	1 001 Data
E	[1]	[1]	[0]	[0]	[0]	Robot Treatment	
12 -	22.69	45.38	12.61	5.88	13.45	Simulation mean:	32.9%
àame F	[27]	[54]	[15]	[7]	[16]	Simulation 95% CI:	[27.6%, 38.2%]
Ring Game R2 R1	16.44	53.42	6.85	6.85	16.44	Empirical mean:	38.2%
el in F F	[12]	[39]	[5]	[5]	[12]	p-value:	0.057
Level in R3 -	8.00	36.00	24.00	0.00	32.00	History Treatment	
Ш	[2]	[9]	[6]	[0]	[8]	Simulation mean:	40.3%
R4	1.35	12.16	8.11	8.11	70.27	Simulation 95% CI:	[34.8%, 45.7%]
	[1]	[9]	[6]	[6]	[52]	Empirical mean:	41.3%
	R0	R1 Leve	R2 el in Guessing G	R3 ame	R4	p-value:	0.768

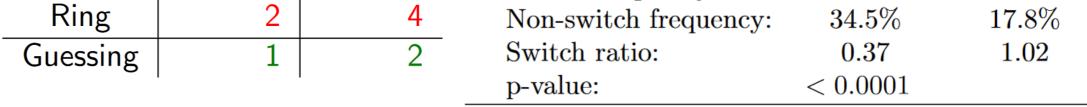
Result: Constant Ordering of Rationality Levels

- Does the ranking of players (in terms of rationality levels) remain the same across games?
- Define switch ratio = switch frequency/non-switch frequency
 - Under the null hypothesis, the (expected) switch ratio = 1

✓ Switc	h:		Ring Game vs. Guessing Game	Empirical Data	Null Hypothesis		
	Player <i>i</i>	Player <i>j</i>	Robot Treatment				
Ring	2	4	Switch frequency:	12.3%	22.5%		
Guessing	4	3	Non-switch frequency: Switch ratio:	$41.3\% \\ 0.30$	$22.5\% \ 1.01$		
✓ Non-s	switch:		p-value:	< 0.0001			
	Player i	Player j	History Treatment Switch frequency:	12.9%	17.9%		

Identification by Revealed Rationality (Lim and Xiong, 2016)

- (First-order) Rationality: the ability to best respond to some belief
- *K*_{th}-order rationality: the ability to anticipate that the opponents are $(K - 1)_{th}$ -order rational and to best respond to such belief
- One is *k*_{th}-order revealed rational if his strategy survives k rounds of iterated elimination of dominated strategies (IEDS)
- A subject is assigned to the lowest type he exhibits across games


Treatments: Robot and History

- Play the games in two different scenarios (without feedback)
- Robot Treatment: against fully rational computer players 1.
- History Treatment: against the data drawn from the first scenario 2.

Instructions for Robot Treatment

The other participants will be computers that are programmed to take the following strategy:

- 1. The computers aim to earn as much payoff as possible for themselves.
- 2. A computer believes that every participant will try to earn as much payoff as one can.
- 3. A computer believes that every participant believes "the computers" aim to earn as much payoff as possible for themselves."
 - Adapted from the instruction used in Johnson et al. (2002)

Conclusion

- We find some consistency in subjects' rationality depths across games in terms of both absolute and relative levels
- This result suggests that strategic reasoning ability may be a ulletpersistent personal trait
- Furthermore, after controlling for a subject's beliefs about his/her opponent's rationality, we may be able to gauge the subject's strategic thinking ability using his/her choice data

References

Cerigioni, F., Germano, F., Rey-Biel, P., & Zuazo-Garin, P. (2019). Higher orders of rationality and the structure of games. Mimeo.

Costa-Gomes, M. A. & Crawford, V. P. (2006). Cognition and behavior in two-person guessing games: An experimental study. American Economic Review, 96(5), 1737–1768.

Georganas, S., Healy, P. J., & Weber, R. A. (2015). On the persistence of strategic sophistication. Journal of Economic Theory, 159, 369–400.

Johnson, E. J., Camerer, C., Sen, S., & Rymon, T. (2002). Detecting failures of backward induction: Monitoring information search in sequential bargaining. *Journal of Economic Theory*, 104(1), 16–47. Kneeland, T. (2015). Identifying higher-order rationality. *Econometrica*, 83(5), 2065–2079. Lim, W. & Xiong, S. (2016). On identifying higher-order rationality. *Mimeo.*

Meng-Jhang Fong Email: mjfong@caltech.edu

Website: https://mjfong.github.io/